

Mandelli Sistemi SpA

Lavorazione dei Materiali Tenaci

Stefano Musletti

Who we are

€400M Euro Turnover (Riello Family Company)

Holding of different Companies active in different markets: Energy, Automation, Safety

7 riello elettronica

riello inuestimenti

Private Equity Company, supports growing companies providing capital and managerial competence

Machine Tools Division €65M Euro Turnover

Where we are

- → Overall Area: 20.300 sqm
- → Covered Area: 19.000 sqm

Sales & Service Direct Office

BENELUX - Mandelli Benelux NV/SA

Kerkplein 25 - 1930 Zaventem

USA - GRS USA

407 E Fort Street, Detroit, Michigan, Suite 504, 48226

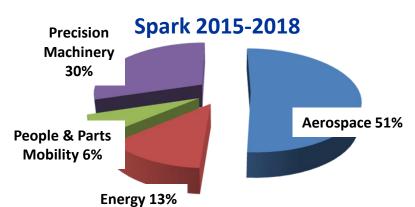
P.R. CHINA - Riello Sistemi (Shanghai) Trade Co., Ltd

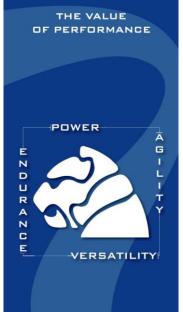
Room 503, 518 Anyuan road, Putuo, Shanghai 200040

- → Overall area: 50.000 sqm
- → Covered area: 10.500 sqm

- → Covered Area: 3.393 sqm

What we do

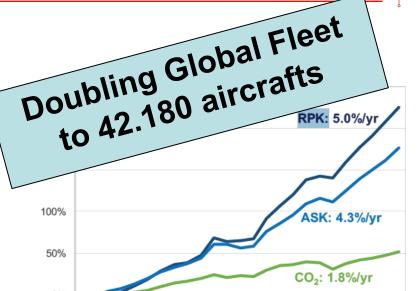

BI-MUpiù

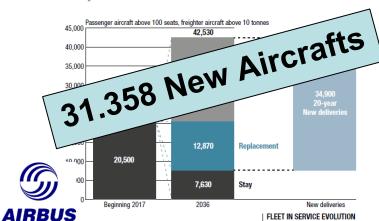

High Quality / High Performance

- Horizontal Machining Centers
- Flexible Manufacturing Systems
 Focused on

5-Axes and Multitasking for

AEROSPACE - ENERGY industries





1999

1996

Revenue Passenger Kilometer

Available Seat Kilometer

Source: Airbus GMF 2017 Rounded figures to the nearest 10

GOAL: CO₂ emission and fuel cost reduction

2005

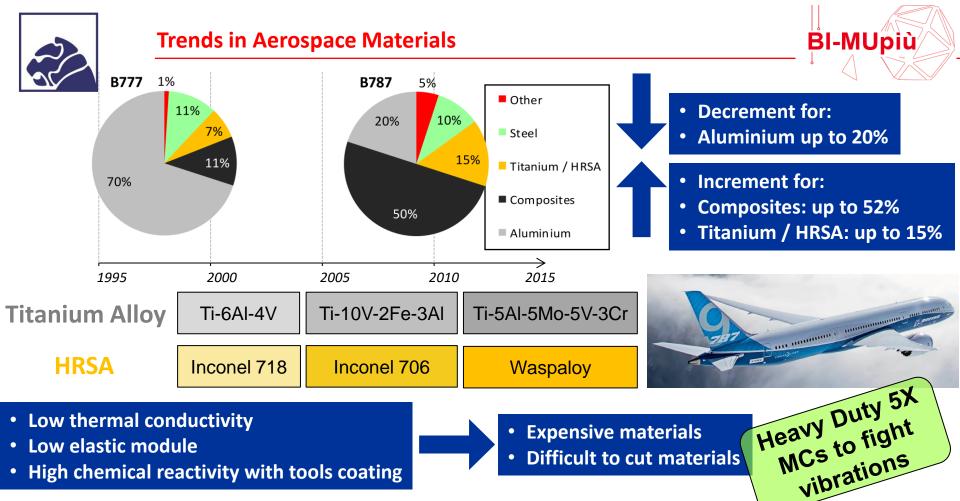
2008

2011

2014

2002

High efficiency engines


1993

- New wings design
- · Light & strong materials

1990

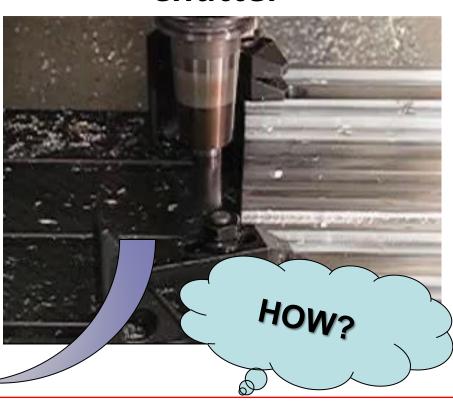
...depends on everything...

...upset the frequency...

...you think you solved it and it is back again...

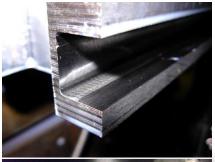
BI-MUpiù

Chatter in machining

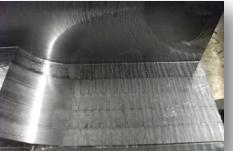

BI-MUpiù

No Chatter

Chatter



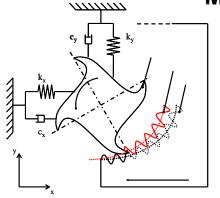
Damages caused by Chatter

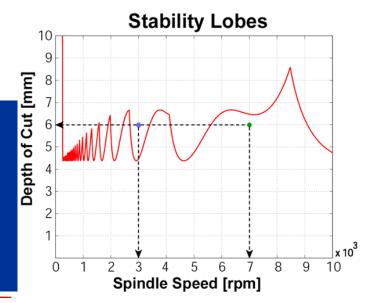

Tool breakage

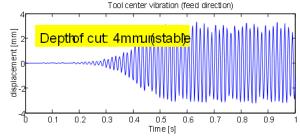

Undesired marks left on the workpiece due to machine vibrations during machining: SCRAP due the unacceptable surface quality

Inserts breakage

Bearings damaging




Machine Dynamics + Cutting process + Delay




$${F}e^{i\omega_{c}t} = \frac{1}{2}aK_{t}\left[1 - e^{i\omega_{c}\tau}\right]A_{0}\left[G(i\omega_{c}t)\right]{F}e^{i\omega_{c}t}$$

DDE (Differential Delayed Equation)

- Also with continuous cut (turn, drill)
- Machine & cutting process model (FRF, tool, cutter, fixture, parameters, material)
- Even with low forces, vibration can become high diverging

Machine / tool dynamics

All the aspects are relevant!!!!

Tool geometry, fixture & Cutting parameters

- Complex equations and calculations
- A lot of influencing factors, difficult to estimate

WHAT WE CAN DO?

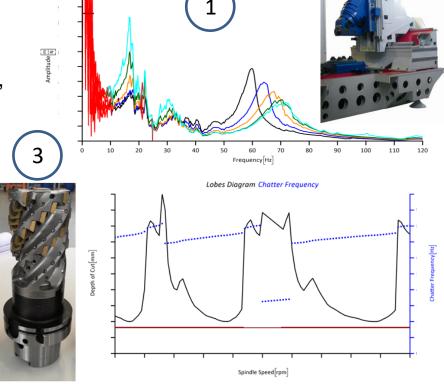
BI-MUpiù

Solutions to Chatter

- 1. Machine Design to minimize dynamic compliance
- 2. Introduce Artificial Damping in the process

3. Provide our Customers with SLD for specific,

critical operations


4. iPum@smartcut(iPuma)

Rail (hardened Steel, grease lub.)

Damping element: special Linear Roller Slide

	HIRTH COUPLING	A-axis DAMPING ON	
Y-axis DAMPING ON	0.035 (- 83.8%)	0.007 (- 96.7%)	PP Y-axis oscillation [mm]
	97.36 (- 20.8%)	33.88 (- 72.5%)	PP spindle current [A]
	29.68 (- 19.6%)	9.49 (- 74.3%)	PP head vibration [m/s²]
Y-axis DAMPING OFF	0.216	0.118 (- 45.4%)	PP Y-axis oscillation [mm]
	123	86.4 (- 29.8%)	PP spindle current [A]
	36.93	25.61 (- 30.7%)	PP head vibration [m/s²]

BI-MUpiù

Machine Head

iPum@smartcut

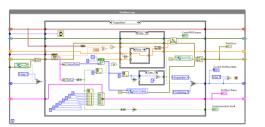
Monitoring Sensors: Sensors Data Acquisition

Control Unit:
Data Elaboration
&
Logging

Control Unit:

Data Interpretation &
Control Strategies

Numerical Control: Profibus Data Acquisition


Data Elaboration

- · Accelerations analysis
- · Noise analysis
- · Machine status signals analysis
- · Cutting forces estimation
- Tool tip vibration estimation

Control Strategies

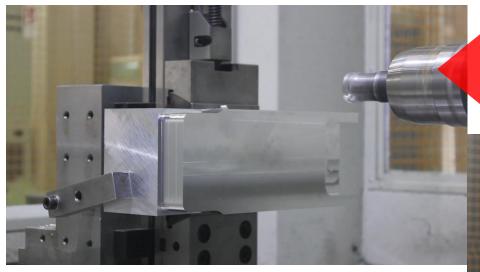
- · Spindle Speed Variation activation
- Spindle Speed Tuning activation

Hydrophone

total waterproof

3-Axes Accelerometer

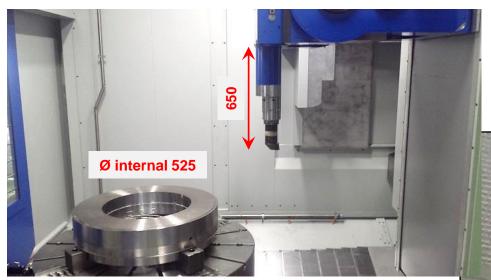
the rigid cover ensures a protection against the metal chips and coolant



Smartcut in Action – Spindle Speed Tuning

Slot milling without *iPum@-smartcut* CHATTER: high vibration & high noise

Slot milling with *iPum@-smartcut*STABLE CUTTING



Smartcut in Action – Spindle Speed Variation

UNSTABLE

Material: C40 Steel

Operation: Internal-turning

Depth of cut: 8 mm

Rotary table speed: 116 rpm

Tool feed: 58 mm/min

RVA: 0.2 RVF: 0.16

Rotary table speed max: 139 rpm Rotary table speed min: 93 rpm

iPum@smartcut Advantages

· Extremely compact system: easy integration aboard the machine

- General purpose and high flexible solution: the smart system can work for several application with different tools, materials, cutting parameters and operations
- Self-selection of the most suitable machining strategy: optimized cutting parameters that allows chatter suppression ensuring the maximum productivity
- Energy saving solution: the spindle current consumption is optimized for the application
- The tool inserts and the machine components life are always protected thanks to the cutting forces estimation in real-time
- Quick closed loop feedback
- Preliminary tool learning cycles are not required
- The text was registered at the Italian patent office,
 the PCT extension will be required for the protection in the world

stefano.musletti@mandelli.com +39 0523 548548

Hall 11, Booth D18-D30

