

Jobs SpA

Focus on Mould&Die Solutions

Mario Orlandi

Head of Technology Sales Aerospace Cluster

BI-MUpiù

Jobs SpA

Arena BI-MUpiù - 31.BI-MU - fieramilano Rho

- > High performance Milling> Cladding
- > Hardening
- > Micro cold forging
- > 3D digitalization

DEVELOPMENT OF A NEW MACHINE

In this table we have analysed the typical machining operations for mould & die and put in relation with the most appropriate accessories

Matris OPERATION / KOPF		P					Ę		R
OP	10	20	30	40	50	60	70	80	90
	Schruppen der schraege Flacche fuer die Befestigung der Zubehoere des Werkseuges. Das mit Igelfresen, Messerkopf bis 600mm	Schruppen der Fushrungen mit Igelfresen	Schruppen der Fuessen und seitlich	Umrissfresen des Kontur mit Igelfresen.	Schlichten der schraege Flaeche. Seitlich ist manchmal Notwendig mit lange Heli- Fraeser zu arbeiten "Bis 600mm	Schruppen der Oberflacche mit diverse Strateghie Torus und Kugel-Fraeser	Vorschlichten um das Material auf konstante Aufmass zu bringen	HSC Schlichten	Schlichten der Fuchrungen mit Heli-Fraesen
Gerade-Kopf Mechanisch		* Schruppen Vertikal aber mit lange Werkzeuge	* Schruppen Vertikal aber mit lange Werkevoge	*** Beste Stelligheit		XXX	0.01		* Schlichten Vertikal aber mit lange Verkaeuge
Universit-Kopf Mechanisch (index 0.02)	*** mit dem indezierte A-Aches kiaan man die Deute Stelifigkeit wehr achesej kaben wei die Storheit als Ropfer ist zuf ein gering	Alternstive auf 30' mit diesem Kopf und Isersore Werkeunge	ن کو	***	**** mit diesem Kopf kaan man auch die Heil-Frasen Urekeaal und hohe drehemoment.	**** mit diesem Kopt kaan man wech die Kugel- Frassen Iver die Schruppen und semilitiking verwenden. Werkeugesche auf est 200 siehetellen	★★★ Optimal bic Kugel D20	* nicht Optimal aber moeglich	*** Alternative suf 30' mit discent Kopf und kursere Frasere
Gabelikopf HSC Motorspindel	* mocglich mit gering Spanwoleme (Aufmass suf Rohrtelle ist sohr schwisrig unter Kontrolle zu haben).				* nicht optimal aber moeglich		*** Kleiner sls D20,mit Motorspindel optimale Bedingungen fuer HSC	*** Mit Motorspindel optimale Bedingungen fuer HSC	

Development of a new overhead gantry machine for mold & die application

	EVER 7		
X-axis	4000-6000-7000-+1500		
Y-axis	3000-3500-4000-5000		
Z-axis	1250-1500-1850		
feedrate.	40.000 mm/min		
acc.	4 m/s ²		

BI-MUpiù

The GrandSpeeder equipped with a laser head

LASERSPEEDER				
X-axis	6000			
Y-axis	3500			
Z-axis	1500			
Feedrate	50.000 mm/min			
Acc.	1,5 m/s ²			

BI-MUpiù

Laser Cladding is used to create a wear-resistant layer on mechanical components.

In this specific application it is used to repair and or add new complex geometries through 3D additive manufacturing on automotive tools and dies.

The selected technology is diode laser using a Fe-base alloy as filler material with a particle range of $45 - 150 \mu m$.

The coating-height has a range of 0.2mm to 2mm.

The nozzle is water-cooled and has a typical working distance of 12 mm.

Laser hardening is used to increase hardness on all commercial hardenable steels. Compared to other technologies like flame or inductor, this system only treats locally reducing the distortion.

The adjustable width is from 5 to 57mm and the depth between of 0.2 to 1.5 depending on the base material.

The achieved result is an Hardness between 55 and 62 HRC.

The temperature control ensures a high process reliability and excellent quality even at complex geometry and contours.

- > This technology has recently been integrated into the Jobs
 eVer 7 machine
- > Replacing of cost intensive manual polishing
- > Significant reduction of total cycle time
- > Surface roughness of less than 0,3 μ m
- > Increasing of inherent compressive stress
- > Sure and repeatable CNC process

3D data collected can be further processed as follows:

- 1) Rough material definition in order to better define the roughing strategy
- 2) Reverse engineering
- 3) Final part inspection

Triple Scan Principle

Together with both cameras, the projection unit operates according to the triple scan principle. During the measurement, precise fringe patterns are projected onto the surface of the object and are recorded by two cameras, based on the stereo camera principle. This automatic principle offers advantages in measuring reflective surfaces or objects with complex indentations

THANK YOU FOR YOUR ATTENTION!

